Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1751: 147175, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33121921

RESUMO

Environmental enrichment (EE) attenuates traumatic brain injury (TBI)-induced loss of medial septal (MS) choline acetyltransferase (ChAT)-cells and enhances spatial learning and memory vs. standard (STD) housing. Whether basal forebrain cholinergic neurons (BFCNs) are important mediators of EE-induced benefits after TBI requires further investigation. Anesthetized female rats were randomly assigned to intraseptal infusions of the immunotoxin 192-IgG-saporin (SAP; 0.22 µg in 1.0 µL) or vehicle (VEH; 1.0 µL IgG) followed immediately by a cortical impact (2.8 mm deformation depth at 4 m/s) or sham injury and divided into EE and STD housing. Spatial learning and memory retention were assessed on post-operative days 14-19. MS ChAT+ cells were quantified at 3 weeks. SAP significantly reduced ChAT+ cells in both the EE and STD groups. Cognitive performance was improved in the EE groups, regardless of VEH or SAP infusion, vs. the STD-housed groups (p's < 0.05). No cognitive differences were revealed between the TBI + EE + SAP and TBI + EE + VEH groups (p > 0.05) or between the TBI + STD + SAP and TBI + STD + VEH groups (p > 0.05). These data show that despite significant MS ChAT+ cell loss, the EE-mediated benefit in cognitive recovery is not compromised.


Assuntos
Prosencéfalo Basal/metabolismo , Neurônios Colinérgicos/fisiologia , Cognição/fisiologia , Animais , Prosencéfalo Basal/fisiologia , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/psicologia , Lesões Encefálicas Traumáticas/terapia , Neurônios Colinérgicos/metabolismo , Meio Ambiente , Feminino , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Aprendizagem Espacial/fisiologia
3.
J Neurotrauma ; 34(2): 451-458, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26975872

RESUMO

Environmental enrichment (EE) confers significant benefits after experimental traumatic brain injury (TBI). In contrast, the antipsychotic drug (APD) haloperidol (HAL) exerts deleterious effects on neurobehavioral and cognitive recovery. Neurorehabilitation and management of agitation, however, are integral components of the treatment strategy for patients with TBI. Hence, the goal of this study was to determine how the two therapeutic approaches interact and influence motor and cognitive recovery. Anesthetized adult male rats received a controlled cortical impact (2.8 mm tissue deformation at 4 m/sec) or sham injury and then were provided HAL (0.5 mg/kg; intraperitoneally [IP]) or vehicle (VEH; 1 mL/kg; IP) commencing 24 h after surgery and once daily for 19 days while housed in EE or standard (STD) conditions. Beam balance/walk and Morris water maze performance were assessed on post-injury days 1-5 and 14-19, respectively, followed immediately by quantification of cortical lesion volumes. The data revealed both expected and unexpected findings. It was not surprising that the TBI groups receiving EE performed significantly better than those in STD housing and that the TBI + STD + HAL group performed worse than the TBI + STD + VEH group (p < 0.05). What was surprising was that the therapeutic effects of EE were greatly reduced by concomitant administration of HAL. No differences in cortical lesion volumes were observed among the groups (p > 0.05). The potential clinical implications of these findings suggest that administering HAL to patients undergoing neurorehabilitation may be a double-edged sword because agitation must be controlled before rehabilitation can be safely initiated and executed, but its use may compromise therapeutic efficacy.


Assuntos
Antipsicóticos/administração & dosagem , Lesões Encefálicas Traumáticas/psicologia , Lesões Encefálicas Traumáticas/terapia , Meio Ambiente , Haloperidol/administração & dosagem , Aprendizagem em Labirinto/efeitos dos fármacos , Animais , Antipsicóticos/toxicidade , Cognição/efeitos dos fármacos , Cognição/fisiologia , Terapia Combinada/métodos , Haloperidol/toxicidade , Masculino , Aprendizagem em Labirinto/fisiologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley
4.
Exp Neurol ; 286: 61-68, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27693618

RESUMO

Environmental enrichment (EE) promotes behavioral recovery after experimental traumatic brain injury (TBI). However, the chronic rehabilitation provided in the laboratory is not analogous to the clinic where physiotherapy is typically limited. Moreover, females make up approximately 40% of the clinical TBI population, yet they are seldom studied in brain trauma. Hence, the goal of this study was to test the hypothesis that abbreviated EE would confer neurobehavioral, cognitive, and histological benefits in brain injured female rats. Anesthetized rats received a cortical impact of moderate-to-severe injury (2.8mm tissue deformation at 4m/s) or sham surgery and then were randomly assigned to groups receiving standard (STD) housing or 4h, 6h, or 24h of EE daily. Motor function (beam-balance/walk and rotarod) was assessed on post-operative days 1-5 and every other day from 1 to 19, respectively. Spatial learning/memory (Morris water maze) was evaluated on days 14-19, and cortical lesion volume was quantified on day 21. No statistical differences were appreciated among the sham controls in any assessment and thus the data were pooled. All EE conditions improved motor function and memory retention, but only 6h and 24h enhanced spatial learning relative to STD (p<0.05). Moreover, EE, regardless of duration reduced cortical lesion volume (p<0.05). These data confirm that abbreviated EE confers robust neurobehavioral, cognitive, and histological benefits in TBI female rats, which supports the hypothesis and strengthens the utility of EE as a pre-clinical model of neurorehabilitation.


Assuntos
Comportamento Animal , Lesões Encefálicas , Transtornos Cognitivos/etiologia , Análise de Variância , Animais , Lesões Encefálicas/complicações , Lesões Encefálicas/enfermagem , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Feminino , Atividade Motora/fisiologia , Desempenho Psicomotor , Ratos , Ratos Sprague-Dawley , Aprendizagem Espacial , Fatores de Tempo , Resultado do Tratamento
5.
J Neurotrauma ; 31(23): 1934-41, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25050595

RESUMO

Buspirone, a 5-HT1A receptor agonist, and environmental enrichment (EE) enhance cognition and reduce histopathology after traumatic brain injury (TBI) in adult rats, but have not been fully evaluated after pediatric TBI, which is the leading cause of death in children. Hence, the aims of this study were to assess the efficacy of buspirone alone (Experiment 1) and in combination with EE (Experiment 2) in TBI postnatal day-17 male rats. The hypothesis was that both therapies would confer cognitive and histological benefits when provided singly, but their combination would be more efficacious. Anesthetized rats received a cortical impact or sham injury and then were randomly assigned to receive intraperitoneal injections of buspirone (0.08 mg/kg, 0.1 mg/kg, and 0.3 mg/kg) or saline vehicle (1.0 mL/kg) 24 h after surgery and once daily for 16 days (Experiment 1). Spatial learning and memory were assessed using the Morris water maze (MWM) on post-operative days 11-16, and cortical lesion volume was quantified on day 17. Sham controls for each condition were significantly better than all TBI groups. In the TBI groups, buspirone (0.1 mg/kg) enhanced MWM performance versus vehicle and buspirone (0.08 mg/kg and 0.3 mg/kg) (p<0.05) and reduced lesion volume relative to vehicle (p=0.038). In Experiment 2, buspirone (0.1 mg/kg) or vehicle was combined with EE after TBI, and the data were compared to the standard (STD)-housed groups from Experiment 1. EE lead to a significant enhancement of spatial learning and a reduction in lesion size versus STD. Moreover, the combined treatment group (buspirone+EE) performed markedly better than the buspirone+STD and vehicle+EE groups, which suggests an additive effect and supports the hypothesis. The data replicate previous studies assessing these therapies in adult rats. These novel findings may have important rehabilitation-relevant implications for clinical pediatric TBI.


Assuntos
Lesões Encefálicas/reabilitação , Buspirona/farmacologia , Meio Ambiente , Aprendizagem em Labirinto/fisiologia , Recuperação de Função Fisiológica/fisiologia , Agonistas do Receptor de Serotonina/farmacologia , Animais , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/psicologia , Buspirona/uso terapêutico , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Agonistas do Receptor de Serotonina/uso terapêutico
6.
J Neurotrauma ; 31(10): 926-37, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24397572

RESUMO

Cognitive impairment associated with prefrontal cortical dysfunction is a major component of disability in traumatic brain injury (TBI) survivors. Specifically, deficits of cognitive flexibility and attentional set-shifting are present across all levels of injury severity. Though alterations in spatial learning have been extensively described in experimental models of TBI, studies investigating more complex cognitive deficits are relatively scarce. Hence, the aim of this preclinical study was to expand on this important issue by evaluating the effect of three injury levels on executive function and behavioral flexibility performance as assessed using an attentional set-shifting test (AST). Isoflurane-anesthetized male rats received a controlled cortical impact (CCI) injury (2.6, 2.8, and 3.0 mm cortical depth at 4 m/sec) or sham injury, whereas an additional group had no surgical manipulation (naïve). Four weeks postsurgery, rats were tested on the AST, which involved a series of discriminative tasks of increasing difficulty, such as simple and compound discriminations, stimulus reversals, and intra- and extradimensional (ED) shifts. TBI produced accompanying impact depth-dependent increases in cortical lesion volumes, with the 3.0-mm cortical depth group displaying significantly larger injury volumes than the 2.6-mm group (p=0.05). Further, injury severity-induced deficits in ED set-shifting and stimulus reversals, as well as increases in total response error rates and total set loss errors, were observed. These novel findings demonstrate executive function and behavioral flexibility deficits in our animal model of CCI injury and provide the impetus to integrate the AST in the standard neurotrauma behavioral battery to further evaluate cognitive dysfunction after TBI. Ongoing experiments in our laboratory are assessing AST performance after pharmacological and rehabilitative therapies post-TBI, as well as elucidating possible mechanisms underlying the observed neuropsychological deficits.


Assuntos
Atenção , Lesões Encefálicas/complicações , Modelos Animais de Doenças , Função Executiva , Testes Neuropsicológicos , Animais , Masculino , Ratos , Ratos Sprague-Dawley
7.
Exp Neurol ; 247: 410-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23333563

RESUMO

Environmental enrichment (EE) consistently induces marked benefits in male rats after traumatic brain injury (TBI), but whether similar efficacy extends to females is not well established. Hence, the aim of this study was to reassess the effect of EE on functional and histological outcome in female rats after brain trauma. Twenty-four normal cycling adult female rats underwent verification of estrous stage prior to controlled cortical impact (CCI) or sham injury and then were assigned to EE or standard (STD) housing. Motor function was assessed with beam-balance/beam-walk and rotarod tasks on post-operative days 1-5 and every other day from 1-19, respectively. Spatial learning/memory was evaluated in a Morris water maze on days 14-19. Morphologically intact hippocampal CA(1/3) cells and cortical lesion volume were quantified 3 weeks after injury. No differences were observed between the EE and STD sham groups in any endpoint measure and thus the data were pooled. In the TBI groups, EE improved beam-balance, beam-walk, rotarod, and spatial learning performance vs. STD (p's<0.05). EE also provided significant histological protection as confirmed by increased CA(1/3) cell survival and decreased cortical lesion size vs. STD. These data demonstrate that EE confers robust benefits in female rats after CCI injury, which parallels numerous studies in males and lends further credence for EE as a preclinical model of neurorehabilitation.


Assuntos
Lesões Encefálicas/enfermagem , Lesões Encefálicas/patologia , Córtex Cerebral/fisiopatologia , Meio Ambiente , Recuperação de Função Fisiológica/fisiologia , Análise de Variância , Animais , Lesões Encefálicas/complicações , Córtex Cerebral/patologia , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Feminino , Hipocampo/patologia , Aprendizagem em Labirinto , Atividade Motora/fisiologia , Exame Neurológico , Neurônios/patologia , Equilíbrio Postural , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod , Percepção Espacial/fisiologia , Fatores de Tempo
8.
J Neurotrauma ; 30(7): 557-64, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23227953

RESUMO

The acetylcholinesterase (AChE) inhibitor donepezil is used as a therapy for Alzheimer's disease and has been recommended as a treatment for enhancing attention and memory after traumatic brain injury (TBI). Although select clinical case studies support the use of donepezil for enhancing cognition, there is a paucity of experimental TBI studies assessing the potential efficacy of this pharmacotherapy. Hence, the aim of this pre-clinical study was to evaluate several doses of donepezil to determine its effect on functional outcome after TBI. Ninety anesthetized adult male rats received a controlled cortical impact (CCI; 2.8 mm cortical depth at 4 m/sec) or sham injury, and then were randomly assigned to six TBI and six sham groups (donepezil 0.25, 0.5, 1.0, 2.0, or 3.0 mg/kg, and saline vehicle 1.0 mL/kg). Treatments began 24 h after surgery and were administered i.p. once daily for 19 days. Function was assessed by motor (beam balance/walk) and cognitive (Morris water maze) tests on days 1-5 and 14-19, respectively. No significant differences were observed among the sham control groups in any evaluation, regardless of dose, and therefore the data were pooled. Furthermore, no significant differences were revealed among the TBI groups in acute neurological assessments (e.g., righting reflex), suggesting that all groups received the same level of injury severity. None of the five doses of donepezil improved motor or cognitive function relative to vehicle-treated controls. Moreover, the two highest doses significantly impaired beam-balance (3.0 mg/kg), beam-walk (2.0 mg/kg and 3.0 mg/kg), and cognitive performance (3.0 mg/kg) versus vehicle. These data indicate that chronic administration of donepezil is not only ineffective in promoting functional improvement after moderate CCI injury, but depending on the dose is actually detrimental to the recovery process. Further work is necessary to determine if other AChE inhibitors exert similar effects after TBI.


Assuntos
Lesões Encefálicas/complicações , Inibidores da Colinesterase/administração & dosagem , Indanos/administração & dosagem , Piperidinas/administração & dosagem , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Donepezila , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Sprague-Dawley
9.
J Neurotrauma ; 29(17): 2684-8, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22774771

RESUMO

It is well established that a relatively brief exposure to environmental enrichment (EE) enhances motor and cognitive performance after experimental traumatic brain injury (TBI), but it is not known whether the benefits can be sustained after EE is discontinued. To address this important rehabilitation-relevant concern, anesthetized rats received a controlled cortical impact (CCI) or sham injury, and for phase 1 of the experiment were randomly assigned to either 3 weeks of EE or standard (STD) housing. Neurobehavioral outcome was assessed by established motor and cognitive tests on postoperative days 1-5 and 14-18, respectively. Beam-balance and spatial learning were facilitated in the TBI + EE more than the TBI + STD group (p<0.0001). In phase 2 of the experiment, half of the rats in EE were transferred to STD conditions (TBI + EE + STD and sham + EE + STD), and neurobehavior was re-assessed once per month for 6 months. The TBI + EE and TBI + EE + STD groups performed markedly better in the water maze than the TBI + STD group (p<0.0001), and did not differ from one another (p=0.53). These data replicate those of several studies from our laboratory showing that EE enhances recovery after CCI injury, and extend those findings by demonstrating that the cognitive benefits are maintained for at least 6 months post-rehabilitation. The persistent benefits shown with this paradigm provide further support for EE as a pre-clinical model of rehabilitation that can be further explored, either alone or in combination with pharmacotherapies, for optimal neurorehabilitation after TBI.


Assuntos
Lesões Encefálicas/psicologia , Cognição/fisiologia , Meio Ambiente , Animais , Comportamento Animal/fisiologia , Interpretação Estatística de Dados , Masculino , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Atividade Motora/fisiologia , Equilíbrio Postural/fisiologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...